Scheduling and Digraphs

Lecture 34 Sections 8.1, 8.2

Robb T. Koether

Hampden-Sydney College

Fri, Apr 13, 2018

- Introduction
- 2 Definitions
- Example
- Digraphs
- Project Digraphs
- 6 Priority Lists
- Assignment

- Introduction
- 2 Definitions
- 3 Example
- 4 Digraphs
- Project Digraphs
- 6 Priority Lists
- Assignment

- To plan a meeting with several invited speakers involves a number of tasks:
 - (A) Locate appropriate speakers.
 - (B) Invite them to speak.
 - (C) Send out announcements of the meeting.
 - (D) Build a website to register attendees.
 - (E) Plan a banquet menu.
 - (F) Retain a caterer.
 - (G) Determine the registration fee.
 - (H) Reserve a room for the banquet.
 - (I) Update website with info.

- Some of these tasks can be done simultaneously.
 - Locate appropriate speakers.
 - Plan a banquet menu.

- Some of these tasks can be done simultaneously.
 - Locate appropriate speakers.
 - Plan a banquet menu.
- Some must be done in sequence.
 - Retain a caterer.
 - Plan a banquet menu.
 - Determine the registration fee.
 - Build a website to register attendees.

- Some of these tasks can be done simultaneously.
 - Locate appropriate speakers.
 - Plan a banquet menu.
- Some must be done in sequence.
 - Retain a caterer.
 - Plan a banquet menu.
 - Determine the registration fee.
 - Build a website to register attendees.
- If we know how long each task will take and if we know the "dependencies," then we can figure out how long the entire project will take.

- Introduction
- 2 Definitions
- 3 Example
- 4 Digraphs
- 5 Project Digraphs
- 6 Priority Lists
- Assignment

Definitions

Definition (Task)

A task is a unit of work that cannot be broken down into smaller units.

Definition (Processor)

A processor is a person or a machine that carries out a task.

 Because a task cannot be broken down into parts, each task must be done by a single processor.

Definitions

Definition (Processing Times)

The processing time of a task is the time necessary to complete the task.

Definition (Precedence Relations)

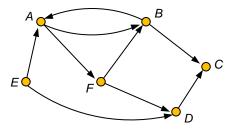
Given two tasks, a precedence relation states that one of them must be *completed* before the other one can be *started*.

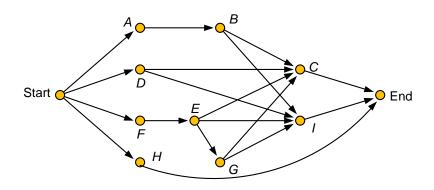
- Introduction
- 2 Definitions
- 3 Example
- 4 Digraphs
- 5 Project Digraphs
- 6 Priority Lists
- Assignment

- Assume the following processor times.
 - (A) Locate appropriate speakers 3 days.
 - (B) Invite them to speak (and get confirmation) 4 days.
 - (C) Send out announcements of the meeting 1 day.
 - (D) Build a website to register attendees 3 days.
 - (E) Plan a banquet menu 1 day.
 - (F) Retain a caterer 2 days.
 - (G) Determine the registration fee 1 day.
 - (H) Reserve a room for the banquet 1 day.
 - (I) Update website with info 1 day.

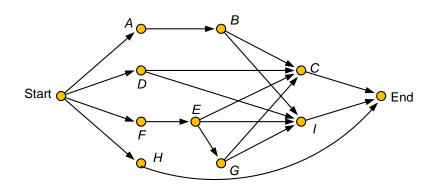
• We have the following times and precedence relations.

	Task	Time	Precedent Tasks
(A)	Locate speakers	3	
(B)	Confirm speakers	4	Α
(C)	Send announcements	1	B, D, E, G
(D)	Build website	3	
(E)	Plan menu	1	F
(F)	Retain caterer	2	
(G)	Registration fee	1	E
(H)	Banquet room	1	
(I)	Update website	1	B, D, E, G


- Introduction
- 2 Definitions
- 3 Example
- Digraphs
- Project Digraphs
- 6 Priority Lists
- Assignment



Definitions


Definition (Digraph)

A digraph is a "directed" graph. That is, each edge is given a direction, indicated by an arrowhead.

• This digraph shows the precedence relations of our example.

- This digraph shows the precedence relations of our example.
- Note the two additional vertices Start and End.

- Introduction
- 2 Definitions
- 3 Example
- Digraphs
- Project Digraphs
- Priority Lists
- Assignment



Project Digraphs

Definition (Project Digraph)

A project digraph is a digraph that displays the precedence relations among the tasks of a project as well as the process times for each task, and START and END vertices.

Example (Project Digraph)

- The diagram shows the precedence relations.
- Some of the precedence relations are *implied* (not shown) by the graph.

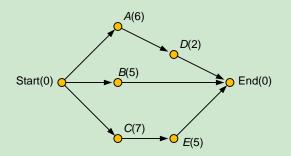
- Introduction
- 2 Definitions
- 3 Example
- 4 Digraphs
- Project Digraphs
- 6 Priority Lists
- Assignment

Priority Lists

Definition (Priority List)

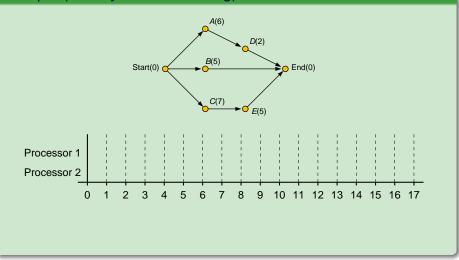
A priority list is a list of the tasks of a project, listed in the order in which we *prefer* to execute them. (But not necessarily in the order in which we *will* execute them.)

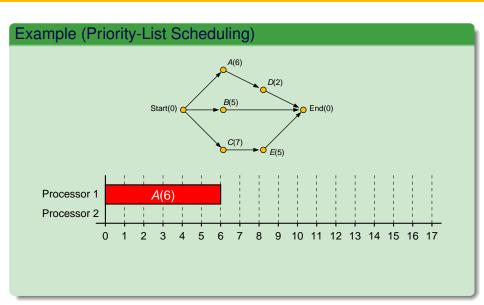
Definition (Priority List Model)

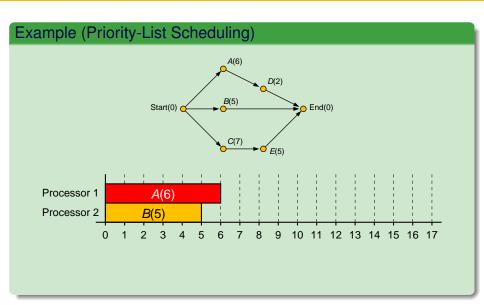

The priority list model uses a priority list to schedule the tasks.

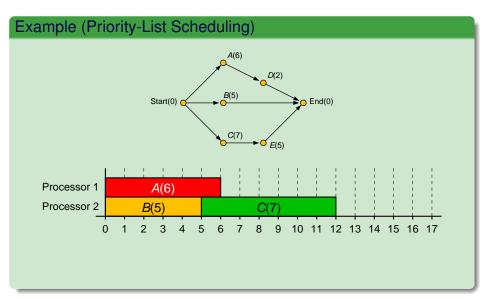
Whenever a processor is available, the model chooses the next task in the list that is ready to be processed. (To be ready, all precedent tasks must have been completed.)

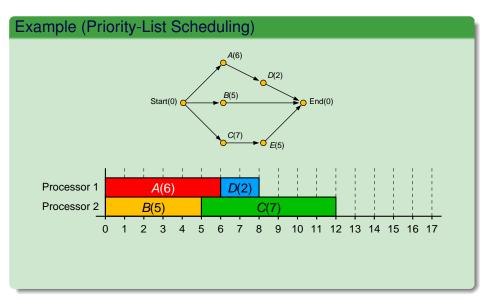
- If there are *M* tasks, then there are *M*! possible priority lists.
- It is not practical to try them all.

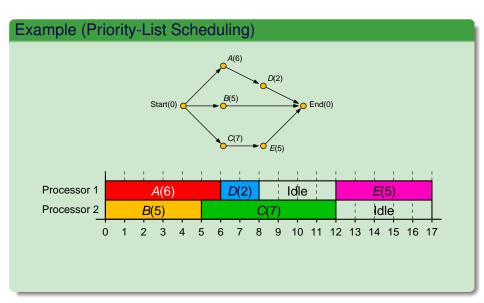



Example (Priority-List Scheduling)




- Suppose the priority list is A, B, C, D, E and that there are only 2 processors.
- What is the resulting schedule?


Example (Priority-List Scheduling)



Example (Priority-List Scheduling)

- What if there had been 3 processors?
- What if the priority list had been A, C, D, E, B?
- What if the priority list had been E, D, C, B, A?

Another Example

Example (Priority-List Scheduling)

	Task	Precedent Tasks	Time
(A)	Locate speakers		5
(B)	Confirm speakers	C, D	2
(C)	Send announcements		4
(D)	Build website		6
(E)	Plan menu	A, C, F	3
(F)	Retain caterer	A, B	1
(G)	Registration fee	F	4

 Schedule the tasks with priority list A, B, C, D, E, F, G with 2 processors.

- Introduction
- 2 Definitions
- 3 Example
- 4 Digraphs
- 5 Project Digraphs
- Priority Lists
- Assignment

Assignment

Assignment

• Chapter 8 Exercises 4, 12, 13, 14, 16, 19, 20.